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The tension generated by randomly distributed myosin minifilaments in an actin gel is evaluated using a
rigorous theorem relating the surface forces acting on the gel to the forces exerted by the myosins. The
maximum tension generated per myosin depends strongly on the lengths of the myosin minifilaments and the
actin filaments. The result is used to place an upper bound on the tension that can be generated during
cytokinesis. It is found that actomyosin contraction by itself generates too little force for ring contraction
during cytokinesis unless the actin filaments are tightly crosslinked into inextensible units much longer than a
single actin filament.
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I. INTRODUCTION

Many key cellular processes in biological cells depend on
contraction induced by the combination of the proteins actin
and myosin. Actin can polymerize to form filaments, which
in turn form a gel that is crucial for the motility and me-
chanical properties of cells. Actin filaments are asymmetric,
having “barbed” and “pointed” ends, with polymerization
more rapid at the barbed end. Depending on the concentra-
tion of free actin monomers, it is possible for barbed ends to
polymerize at the same time as pointed ends depolymerize.
Myosin is a two-headed motor protein which, by consuming
energy in the form of adenosine triphosphate �ATP�, moves
toward the barbed ends of actin filaments. This process cre-
ates stresses by displacing the actin filaments in the gel rela-
tive to each other. The most familiar function of the actin-
myosin �actomyosin� system is in the contraction of muscles,
but it is crucial for many functions of nonmuscle cells as
well. For example, eukaryotic cells undergoing division, or
cytokinesis, form actomyosin rings at the cell membrane �1�.
The rings contract, typically over a period of minutes or
more, and thus “pinch off” the cell into two parts. Actomyo-
sin contraction is also important for wound healing �2�, dor-
sal closure �3�, and retraction of the trailing edges of cells
during directed motion �4,5�.

In order to understand these effects quantitatively, it is
necessary to evaluate the contractile stress using established
principles of mechanics. Force generation by the ordered
myosin arrangements in muscle has been well studied �6�. In
addition, several recent continuum-based calculations �7–12�
have treated the structure and/or stresses of contractile rings.
These calculations have suggested plausible routes to the
self-assembly of the ring, and have suggested that the inter-
action of parallel filaments can lead to contraction. The stress
in the contractile ring has also been given in terms of the
actin filament length, the filament concentration, the filament
velocity, and the filaments’ friction coefficient �7�. However,
there are no general results available that relate the stress in
the disordered structure of observed contractile rings and
other cellular contractile structures directly to the myosin
concentration, the force per myosin, and the microscopic
structure of the actomyosin gel including the distribution of
the myosin heads. Such results are useful both for obtaining

a physical understanding of the contraction process, and as
input for simulation studies of processes such as cytokinesis
�13� and cell motility �14�.

For the contractile ring in cytokinesis, the problem is con-
veniently formulated in terms of the tension T �having units
of force� in the ring. The ring is attached to the inside of the
cell membrane by mechanisms not definitively established.
The membrane surface tension opposes ring contraction, and
T must be large enough to overcome this effect. The simplest
theory relating T for contractile rings to the myosin concen-
tration and force per myosin �15� is that

T = NpF , �1�

where N is the total number of myosin heads �twice the
number of myosin molecules since myosin is two-headed�, p
�the duty ratio� is the fraction of myosin heads that are gen-
erating force at a given time, and F is the force generated by
a myosin head. In this theory, T is independent of the struc-
ture of actomyosin gel. In the remainder of the paper, I will
show that T depends crucially on both the arrangement of the
myosin heads and the structure of the actin gel.

II. ANALYSIS FOR HOMOGENEOUS ACTIN GEL

The approach used here is to treat myosins as external
forces acting on the actin gel, which is for now taken to be a
homogeneous medium. We will see that the tension gener-
ated by the myosins depends strongly on their aggregation.
The model can treat nonpolymerized myosin �heavy mer-
omyosin�, but I focus on linear myosin aggregates called
minifilaments, in which the active myosin heads are concen-
trated at the ends of the aggregates. Minifilament formation
is required for contractile ring formation �16�. The known
structure of myosin minifilaments �17� suggests the sche-
matic model shown in Fig. 1. At each end are m myosin
heads �circles�. These travel toward actin-filament barbed
ends and thus tend to pull the filaments in the pointed-end
direction. The central region is free of heads. Typical min-
ifilaments are less than 0.5 �m long and contain less than
fifty myosin molecules �17�. If the minifilaments are larger
than the actin gel mesh size, the assumption of a homoge-
neous actin gel will hold; corrections to this picture are dis-
cussed in the following section.
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The net force exerted by a minifilament �or a molecule of
heavy meromyosin� on the actin gel is small enough that it
can be ignored in our calculations. To see this, note that
because a minifilament is very light, the net force exerted on
it must effectively vanish to avoid unrealistically large accel-
erations. This force consists of the forces exerted on it by the
actin gel, plus the viscous drag force resulting from its trans-
lational motion. For a velocity of 1 �m/s a minifilament
length and thickness of 0.3 �m and 50 nm, respectively, and
a cytoplasmic viscosity ten times greater than that of water,
standard formulas for the viscous drag force on a moving rod
�18� yield a viscous drag force of 0.01 pN, much less than
the maximum force of several pN generated by even a single
myosin head �19�. Since both the viscous torque and the
torque exerted by the myosin motor activity are proportional
to the minifilament length, the viscous drag torque is also
much less than that which could result from the motor activ-
ity. Thus we can safely assume that the total force and torque
�measured relative to the minifilament’s center� exerted on a
minifilament by the actin gel vanishes; the corresponding
quantitites exerted on the actin gel by a minifilament must
then vanish as well, by Newton’s third law. The same holds a
fortiori for heavy meromyosin, since it is smaller than a min-
ifilament.

Therefore it is legitimate to treat a myosin minifilament as

a force dipole: a pair of oppositely directed forces +mpF� and

−mpF� �see Fig. 1�. I take the points of action R� and

R� �, respectively, to be at the ends of the minifilament �this
approximation strengthens the inequality derived below�. F
is the magnitude of the force per myosin and, because of the

zero-torque condition, F� is parallel or antiparallel to

d� =R� −R� �. I take F� antiparallel to d� by analogy with the
known geometry of muscle. To calculate the tension T in-
duced by the minifilaments, I relate the outward force ex-
erted by the cell membrane on the shrinking contractile ring
to the minifilament density and the strength of the force di-
pole. Figure 2 shows a slice, at a particular time, of the
contractile ring, which experiences forces from the myosin

minifilaments and the cell membrane. The calculation of T is
based on the relation

�v̇i = f i + �
j

��ij

�rj , �2�

where � is the mass density of the actin gel, v� is its local

velocity of motion, f� is the density of force exerted on the
gel, and �̂ is the gel’s stress tensor. This result is simply a
statement of Newton’s second law for a continuous material
and is thus independent of the constitutive relation assumed
for the actin gel. The acceleration term in Eq. �2� is exceed-
ingly small. An upper bound of 5�10−4 kg/m2 s2 for this
term is obtained by taking � to be the density of water, v
=5 �m/s, and an extremely short characteristic time of 10 s
for cytokinesis. On the other hand, if one assumes a tension
of 1 nN �much smaller than experimental estimates dis-
cussed below�, a cross-sectional area of 1 �m2, and a char-
acteristic length scale of 1 �m for variations in �̂, the second
term on the right-hand side is 109 kg/m2 s2. Thus the left-
hand side of Eq. �2� is completely negligible by comparison,
and we may safely assume that

f i = − �
j

��ij

�rj . �3�

The validity of Eq. �3� implies that the mean-stress theo-
rem �20� holds. This theorem, obtained from Eq. �3� via an
integration by parts, states that

� rifarea
j dA =� �ijdV −� rifbody

j dV , �4�

where the total force f� has been partitioned into components

f�area, the area force due the membrane, and f�body, the body
force due to the myosins. Taking the trace of Eq. �4�, one
obtains

FIG. 1. Schematic of interaction between myosin minifilament
�thick line� and pointed ends of action filaments �above myosin�.
Barbed ends of filaments are out of the picture. The arrows denote

forces exerted at points R� and R� � by m myosin heads with duty ratio
p in contact with the actin filament, each exerting a force of mag-
nitude F; d is the minifilament length.

FIG. 2. Contractile ring �stippled� and forces farea opposing con-
traction �arrows outside the ring�. The barbells denote myosin
minifilaments.
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� �f�area · r��dA =� Tr��̂�dV −� �f�body · r��dV . �5�

Since the ring volume decreases due to the forces from the
myosins, the hydrostatic part of the stress in the gel, Tr��̂�,
will be negative. Therefore,

� �f�area · r��dA � −� �f�body · r��dV . �6�

I emphasize that no specific assumption regarding the con-
stitutive law of the gel has been made to derive this result. It
will, for example, hold if the actin gel is treated as a viscous
fluid, a viscoelastic medium, or an elastic medium �linear or
nonlinear�.

Cytokinesis requires a contractile stress, so it may at first
seem surprising that the stress �̂ in the actin gel is compres-
sive �Tr��̂��0�. However, the contraction is driven by the
combination of the actin gel and the myosin minifilaments,
and the latter contribute a tensile stress, which is sufficient to
render the total stress, including both the actin gel and the
myosins, contractile. Recalling that the gel is assumed to be
homogeneous on the scale of a minifilament, one sees that
the gel is compressed in the regions between the ends of a
minifilament, leading to a negative stress in this region. If
there is an external force opposing contraction, there will be
tensile stresses in other regions, but because the overall vol-
ume change of the ring is negative, the average stress in the
actin portion of the gel is negative. Note that this argument
depends on the assumption that the actin gel is homogeneous
on the scale of a minifilament; corrections to this picture are
discussed in the following section.

I apply Eq. �6� to the geometry of Fig. 2. The ring is most
conveniently thought of as a torus, but the result holds for
any profile with cylindrical symmetry. The area integral in
Eq. �5� is taken over the outer curved surface of the ring.
Thus

TC =� �f�area · r��dA � −� �f�body · r��dV

= − Np�F� · d��/2 = NpFd/2, �7�

where C is the circumference and N is the total number of
myosin heads. The first equality follows from a straightfor-
ward calculation of the work done by a virtual contraction of
the ring. The second and third inequalities hold because the

contribution of each minifilament to the integral is mF� ·d� , the

number of minifilaments is N /2m, and, since F� and d� are

oppositely oriented, F� ·d� =−Fd. Therefore

T � NpFd/2C . �8�

T is thus reduced by a factor of d /2C relative to Eq. �1�. This
result is clarified by the approximate analogy between me-
chanics and electrostatics, where force is analogous to elec-
tric charge and stress is analogous to electric field. The con-
tent of Eq. �8� is that the effect of each force dipole �as in
electrostatics� is proportional to both the magnitude of the
forces, and the separation between them. If the myosin min-

ifilaments are replaced by heavy meromyosin, d becomes the
separation between the two heads.

III. INHOMOGENEOUS ACTIN GEL

The analysis above holds for actin gels in which the mesh
size is less than d, which renders them homogeneous on the
length scale of a minifilament. However, the mesh size will
often be larger than d. The resulting inhomogeneity enhances
the contractile stress induced per myosin, because actin fila-
ments are effectively inextensible and thus transfer the myo-
sin force to larger distances. To evaluate this effect, I con-
sider the model shown in Fig. 3�a�, in which a minifilament
exerts forces on two straight actin filaments of length L em-
bedded in a homogeneous medium comprised of the other
filaments. The two actin filaments transfer the force from the
minifilament to the medium. The total displacement field is
the sum of the fields induced by the two actin filaments. For
each filament, the leading-order term in the displacement
field at large distances is that of a point force of magnitude
mpF exerted at the center of the filament, which decays with
distance r as 1/r. The next-order term, because the filament
is symmetric with respect to its center, decays as 1/r3. The
asymptotic displacement field is then that of the two oppos-
ing forces acting at the filament centers, which decays as
1/r2; the effect on the medium is the same as if the minifila-
ment had a d value of deff, where deff is the distance between
the filament centers.

I thus use an analysis parallel to that leading to Eq. �8�,
but with the forces acting at points a distance deff, rather than
d, apart. I replace the system of minifilaments of size d act-
ing on an inhomogeneous medium, with forces acting at a
separation of deff in a homogeneous medium. Treating the
actin gel as homogeneous in the latter case is legitimate be-
cause deff should be on the order of the filament length and
thus larger than the mesh size. Therefore our approach will
obtain the macroscopic tension in the contractile ring cor-
rectly. But it will not accurately describe the spatial variation

FIG. 3. Interaction between myosin minifilament �barbell� and
actin filaments in viscous background �stippled�, in contractile �a�
and expansive �b� configurations. Both actin filaments have length
L, and d is the size of the myosin minifilament. The arrows inside
the actin filaments denote the direction of myosin force acting on
them.
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of the tension on length scales less than a filament size.
In the most favorable case where the minifilament ends

are at the pointed ends of both filaments, deff=d+L, and the
maximum possible tension is

Tmax = NpF�d + L�/2C , �9�

corresponding to a maximum stress

�max = npF�d + L�/2, �10�

where n is the number density of myosin heads. Equation �9�
is the tension that is obtained in a model of “minisarcom-
eres” �21� of length d+L placed end-to-end along the ring �a
sarcomere is a discrete actin-myosin contractile unit found in
muscle�. The actual tension is less than Tmax because not all
of the myosins are at actin filament pointed ends.

The contention that Eq. �9� obtains the correct maximum
macroscopic tension is confirmed by analysis of a simple
one-dimensional model system consisting of two-filament
bundles placed end to end. The two filaments in each bundle
overlap from end to end, so the bundle length is equal to the
filament length L. Each bundle is held together by a number
of passive rigid crosslinks. In each bundle, the two filaments
are oriented in opposite directions so that one pointed end is
exposed at each end of the bundle. At each point where two
bundles meet, a minifilament of length d, assumed to be
negligible compared to L, pulls on the two available pointed
ends. The minifilament has m myosin heads at each end. For
simplicity I assume that the opposing force is sufficiently
large to prevent contraction. Then the balance of forces on
each element of the ring shows that the tension inside each
bundle has the constant value mpF. On the other hand, since
N=2mC /L, and d is assumed small, the right-hand side of
Eq. �9� is also mpF. Thus the macroscopic stress is obtained
correctly by our analysis even though its variation on length
scales below a filament length is not predicted by the theory.
Note that a different arrangement of the minifilaments can
lead to much smaller tensions. For example, if a minifilament
connects two filaments in the same bundle, its action will to
expand the ring rather than contracting it. Thus it is appro-
priate to think of Tmax as an upper bound for the tension.

The proportionality of the maximum stress to the filament
length, displayed by Eq. �10�, is consistent with an expres-
sion obtained in Ref. �7� from a phenomenological one-
dimensional model. For the case of interactions between fila-
ments of like orientation, and an equal number of filaments
oriented in both directions around the ring, this expression
becomes

�tot = ��̄L3nfil
2 , �11�

where � is a parameter determining the relative velocities of
interacting filaments, �̄ is a friction coefficient per unit
length, and nfil is the total density of filaments �pointing in
either orientation�. In this model, the filament speed is pro-
portional to L because the motion is induced by other fila-
ments, and the number of other filaments it interacts with is
proportional to L. The magnitude of the frictional force Ffric
acting on the filament is thus proportional to L2, since � is
defined per unit length, and thus the drag-speed ratio is pro-

portional to L. Thus �tot�FfricL, and has the same depen-
dence on force and L as Eq. �9�.

IV. BIOPHYSICAL IMPLICATIONS

The model defined above and Eq. �9� have important im-
plications for the biophysics of cytokinesis. First, actin dy-
namics are required for continuing contraction by the acto-
myosin ring. The myosin-actin filament configuration in Fig.
3�a� initially induces a contractile stress. But the motion of
the myosin heads will eventually place them at the filament
barbed ends �Fig. 3�b��. The separation vector between the
filament centers then changes sign, so the force dipole and
the stress also change sign, causing expansion rather than
contraction �22�. However, actin filaments can undergo
“treadmilling,” a process in which barbed ends polymerize
and pointed ends depolymerize at comparable velocities. If
treadmilling occurs rapidly enough, the myosin heads can
remain near the pointed ends of the actin filaments despite
their motion toward barbed ends. This suggests that the con-
traction rate is limited by the treadmilling rate. Assuming a
net pointed end off rate of 0.7 s−1 �23�, and a filament length
of 0.6 �m �24� or about 200 subunits, the treadmilling rate
would lead to a maximum strain rate of 0.003 s−1. This im-
plies that the contraction time must be at least on the order of
300 s, consistent with observed times �15,21�. The rate
could, however, be faster if intracellular proteins, such as
actin-depolymerizing factor �ADF�/cofilin, accelerate
pointed-end depolymerization. Actin dynamics involving
processes other than individual filament treadmilling could
also enable continuing ring contraction. For example, fila-
ment severing by the cellular protein cofilin is enhanced by
phosphate release from polymerized subunits �25�, and this is
more likely to have occurred for the older subunits near the
pointed ends. Thus more severing events will occur near
pointed ends, and such events will leave the myosin heads
nearer the newly created pointed ends. The predicted require-
ment of actin dynamics for cytokinesis is consistent with
observations on the fission yeast Schizosaccharomyces
pombe �26�, which showed that drug treatments inhibiting
actin dynamics prevented cytokinesis.

Second, there are two organisms for which accurate
counts of the number of myosins in the contractile ring are
available, S. pombe and the slime mold Dictyostelium discoi-
deum. For both of these, Tmax as given by Eq. �9� is much
less than the minimum tension Treq required to overcome the
membrane tension. For D. discoideum, calculations �15�
based on the measured membrane tension obtain Treq=7 nN;
extrapolation of these results to S. pombe, assuming a mem-
brane tension equal to that in D. discoideum, and a propor-
tionality of T to cell size �as suggested by Ref. �27�� gives
Treq=4 nN. In the calculation of Tmax for D. discoideum, I
use N=240,000, p=0.006, C=10 �m �15�, F=3.5 pN �19�,
and d=0.3 �m �17�, L=0.6 �m �24� as representative val-
ues. This gives Tmax=0.33 pN, some twenty times smaller
than Treq. For S. pombe, the value of p is not known, so I take
a value of 0.1, which is in the typical range for myosin.
Using the same values of F and d as above, as well as
N=5,800 and C=7 �m �30% lower than the uncontracted

A. E. CARLSSON PHYSICAL REVIEW E 74, 051912 �2006�

051912-4



value of Ref. �21��, gives Tmax=0.14 pN, again much smaller
than Treq.

These discrepancies cannot be explained by uncertainties
in the parameter values. The main uncertainties are in the
membrane tension and p. The membrane tension for D. dis-
coideum could be overestimated by the micropipette aspira-
tion measurements used to measure it, and the assumption
that S. pombe has the same tension as D. discoideum could
be inaccurate. However, changing either of these estimates
by a factor of five would still give Tmax	Treq. The value of p
assumed for S. pombe could be inaccurate, but the correct
value is not likely to be more than five times larger than the
value of 0.1 we assume here; furthermore, an error in p
would not explain the discrepancy for D. discoideum. In ad-
dition, Tmax is derived using very favorable assumptions,
which are unlikely to hold in biological organisms. Two al-
ternative possibilities come to mind:

�1� The crosslinking of the actin gel could create stable
clusters of filaments. A cluster of nearly parallel filaments,
with sufficiently rigid crosslinks, could form an essentially
inextensible “superfilament,” which would act elastically as
a single filament. If the length of the superfilament were
comparable to C, this effect would increase Tmax by an order
of magnitude. Combined with an enhancement of p, this
could raise Tmax above Treq. This possibility is supported by
the accumulation of cross-linking proteins in contractile
rings: �-actinin accumulates in the S. pombe contractile ring
�21� and cortexillins accumulate in that of D. discoideum
�28�. Furthermore, myosin II, itself a cross linker, accumu-
lates in the contractile rings of both organisms �15,21�. The
possibility of long-range force propagation in actin gels is
also supported by the finding that forces in cells can be trans-
mitted over distances much larger than expected from homo-
geneous elasticity theory �29�. In this study, the force trans-
mission range was reduced by caldesmon, an inhibitor of the
actin-myosin interaction, suggesting that some aspect of this
interaction can lead to long-range force propagation.

�2� Localized actomyosin contraction is not the main driv-
ing force for cytokinesis. Because of the established need for

myosin II for cytokinesis of cells in suspension �30�, we
consider this hypothesis to be less plausible than the preced-
ing one. However, it is consistent with the observation that
bacteria, which have no known motor proteins, are able to
form a contractile ring and divide �31�. Furthermore, D. dis-
coideum on a substrate can undergo cytokinesis in the ab-
sence of myosin �32�. If actomyosin contraction is not the
main force-generating process, the crucial function of myo-
sin in the contractile ring might be in the acceleration of
actin gel dynamics �33� or in the assembly of the contractile
ring.

The predictions of this model could be tested by three
types of experiments. First, electron-microscopy studies
could establish the locations of the myosins in the ring. Ac-
cording to the model, they should be near the pointed ends of
the actin filaments, or, if the filaments are linked into clusters
with well-defined polarities, the myosins should be near the
pointed ends of the clusters. Second, direct measurements
could be made of the forces between focal adhesions on elas-
tic substrates, in combination with quantitative fluorescence
measurements of the number of myosins. These would not be
directly applicable to cytokinesis, but could test Eq. �9� if the
duty ratio and filament length were known. Finally, the de-
formation of microneedles of known mechanical properties
placed inside the contractile ring could be measured �34�.
This experiment would not measure T directly, because the
contractile ring must supply the force to deform both the
membrane and the needles. However, it would provide a
lower bound, which could be compared with Eq. �9�.
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